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Department of Analytical Chemistry, University of Pardubice, CZ 532 10 Pardubice, Czech Republic

Received 13 April 2007; revised 1 June 2007; accepted 6 June 2007
*Correspondence
University of Par
E-mail: milan.me

Copyright # 200
ABSTRACT: A new computational procedure for the protonation model building of a multiwavelength and
multivariate spectra treatment is proposed for the special case of small changes in spectra. The absorbance change
Di for the ith spectrum divided with the instrumental standard deviation sinst(A) represents the signal-to-error ratio
SER of the spectra studied. The determination of the number of chemical components in a mixture is the first important
step for further quantitative analysis in all forms of spectral data treatment. Most index-based methods of the factor
analysis can always predict the correct number of components, and even the presence of a minor one, when the SER is
higher than 10. The Wernimont–Kankare procedure in the program INDICES performs reliable determinations of the
instrumental standard deviation of the spectrophotometer used sinst(A), correctly predicts the number of light-
absorbing components present, and also solves ill-defined problems with severe collinearity in spectra or very small
changes in spectra. The mixed dissociation constants of three drugs, haemanthamine, lisuride, and losartan, including
diprotic molecules at ionic strengths of I¼ 0.5 and 0.01 and at 258C were determined using two different multi-
wavelength and multivariate treatments of the spectral data, SPECFIT32 and SQUAD(84) non-linear regression
analyses and INDICES factor analysis, even in the case of small absorbance changes in spectra. The dissociation
constant pKa was estimated by non-linear regression of {pKa, I} data at 258C: for haemanthamine pKa¼ 7.28(1) at
I¼ 0.50, for lisuride pKa¼ 7.86(1) and for losartan pKa,1¼ 3.60(1), pKa,2¼ 4.73(1) at I¼ 0.01. Goodness-of-fit tests
for the various regression diagnostics enabled the reliability of the parameter estimates found to be proven. PALLAS
and MARVIN predict pKa being based on the structural formulae of the drug compounds in agreement with the
experimental value. Copyright # 2007 John Wiley & Sons, Ltd.
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INTRODUCTION

Protonation constants, or acid dissociation constants, are
very important both in the analysis of drugs and in
the interpretation of their mechanisms of action, as they
are key parameters for predicting the extent of the
ionization of a drug molecule in solution at different
pHs. Spectrophotometry is a convenient method for
pKa determination in very diluted aqueous solutions
(about 10�5–10�6M), provided that the compound
possesses pH-dependent light absorption due to the
presence of a chromophore in the proximity to the
to: M.Meloun, Department of Analytical Chemistry,
dubice, CZ 532 10 Pardubice, Czech Republic.
loun@upce.cz
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ionization center. In previous work, 1–9 the authors have
shown that the spectrophotometric method can be used in
combination with suitable chemometric tools for the
determination of protonation constants bqr or acid
dissociation constants pKa, even of barely soluble drugs.
Problems arise because of strong overlapping chemical
components involved in the equilibrium or small changes
of spectral responses caused by a drug protonation, and
uncertainties arising from the mathematical algorithms
used to solve such problems. In such cases, much more
information can be extracted if multivariate spectro-
photometric data are analyzed by means of an appropriate
multivariate data analysis method cf. References 10–25.

Much work has been devoted to the development of
methods for the resolution of multicomponent spectra, but
less work has been carried out to reveal the limitations of
J. Phys. Org. Chem. 2007; 20: 690–701



pKa ESTIMATION OF DRUGS 691
the methods and to estimate the minor components
of the resolved spectra 1. When no noise in spectra exists,
the number of eigenvalues of the covariance matrix
ATA larger than zero is equivalent to the number of
components, r, assuming that the spectra of the com-
ponents in mixture are linearly independent. As all real
data always contains experimental noise, the number of
eigenvalues different from zero is usually larger than the
number of components r. Experimental and/or random
error can mask the identification of the true dimension-
ality of a data set. Chen et al. 26,27 have concluded
that many multivariate statistical methods have been
designed, and have solved certain problems encountered
in spectra sets, when the spectra of components are
similar and changes in absorbance are very small, and
when there exist minor components or when the signal to
noise ratio is low. In any study of this type, the level
of ‘experimental noise’ used will be a critical factor. It
is therefore necessary to have a consistent definition
of the signal-to-noise ratio SNR so that the impact of
this parameter can be critically assessed. Traditional
approaches to SNR are typically based on the ratio of the
maximum signal to maximum noise value. As an
alternative, the concept of instrumental error was again
employed and the signal-to-error ratio SER is defined,
where for an error the instrumental standard deviation of
absorbance, sinst(A), is used. Attention should be paid to a
method’s ability to detect a minor component in the
presence of major ones. The detection limit is equivalent
to the amount of ‘detectable impurity’ or the smallest
relative concentration of the minor component. Approach-
ing the detection limit, no method can accurately determine
the minor component in the mixture. The detection limit
depends on several factors, such as (i) the spectral
similarity of the minor component to the other com-
ponents, (ii) instrumental resolution, (iii) noise level and
noise type, and (iv) the signal-to-noise ratio SNR with
respect to the minor component.

The regression methods include traditional least-
squares curve fitting approaches, based on a previous
postulation of a chemical model, that is, the postulation
of a set of species defined by their stoichiometric co-
efficients and formation constants, which are then refined
by least-squares minimization. These mathematical pro-
cedures require the fulfillment of the mass-balance equa-
tions and themass-action law. Themost relevant algorithms
are SQUAD(84) 14–19 and SPECFIT32 22–24,31.

Recently, haemanthamine, lisuride, and losartan were
studied in our laboratory 7,8, and these three drugs were
taken as examples of acid drugs which exhibit small
changes in spectra.

Haemanthamine belongs to the class of 5,10B-ethano-
phenanthridines. It possesses relatively high antiretro-
viral properties, antiproliferative effects and also has
potent antimalarial properties (against Plasmodium falci-
parum).8 It is also found in the bulbs of Amaryllidaceae
(Clivia species) and Liliaceae (Hippeastrum, Lycoris,
Copyright # 2007 John Wiley & Sons, Ltd.
Narcissus). CAS No.: 466-75-1, summary molecular
formula: C17H19NO4, molecular weight: 301.4, octanol/
water partition coefficient as log Po/w: 1,47–1,56
(calculated); pKa not known. Haemanthamine is of the
structure

Lisuride: The systematic chemical name of lisuride is
3-(9,10-Didehydro-6-methyl-8a-ergolinyl)-1,1-diethylu-
rea 8 and it is of the structure

Recommended INN name: lisuride, CAS Number:
18016-80-3, EINECS: 241-925-1, ACX. 7 Number:
X1063856-3, description: almost white to light yellow
or brownish crystalline powder, molecular formula:
C20H26N4O, molecular weight: 338.5, melting point:
169–1728C, solubility: slightly soluble in methanol,
ethanol, dimethylformamide, dimethylsulfoxide, chloro-
form, and dichloromethane, sparingly soluble in ether and
practically insoluble in water and hexane; pKa is not
known due to insolubility in water.

Losartan is a biphenylimidazole type drug, chemi-
cally 2-Butyl-4-chloro-1-[[20-(1H-tetrazol-5-yl) [[1,10-
biphenyl]-4-yl]methyl]-1H-imidazole-5-methanol, CAS
No. 0114798-26-4, molecular formula C22H23ClN6O,
molecular weight 422.93 7 is of the structure
J. Phys. Org. Chem. 2007; 20: 690–701

DOI: 10.1002/poc
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It is an AT1 antagonist. Angiotensin II binds to the AT1
receptor found in many tissues (e.g., in the vascular
smooth muscle, adrenal gland, kidneys and heart), and
elicits several important biological actions, including
vasoconstriction and the release of aldosterone. These
effects of angiotensin II lead to elevation of the blood
pressure.
THEORETICAL

Procedure for the determination of the
protonation constants

The protonation equilibria between the anion L (the
charges are omitted for the sake of simplicity) of a drug
and a proton H are considered to form a set of variously
protonated species L, LH, LH2, LH3, . . ., etc., which have
the general formula LqHr in a particular chemical model
and which are represented by nc the number of species, (q,
r)i, i¼ 1, . . ., nc where index i labels their particular
stoicheiometry; the overall protonation (stability) con-
stant of the protonated species, bqr, may then be
expressed as

bqr ¼
½LqHr�

ð½L�q½H�rÞ ¼
c

lqhr

where the free concentration [L]¼ l, [H]¼ h and
[LqHr]¼ c. For dissociation reactions realized at
constant ionic strength the so-called ‘mixed dissociation
constants’ are defined as Ka;j ¼ ½Hj�1L�aHþ=½HjL�. As
each aqueous species is characterized by its own
spectrum, for UV/VIS experiments and the ith solution
measured at the jth wavelength, the Lambert-Beer
law relates the absorbance, Ai,j, being defined as
Ai; j ¼

Pnc
n¼1 "j; ncn ¼

Pnc
n¼1 ð"qr; jbqrl

qhrÞn where eqr, j

is the molar absorptivity of the LqHr species with
the stoichiometric coefficients q, r measured at the
jth wavelength. The absorbance Ai, j is an element of the
absorbance matrixA of size (ns� nw) beingmeasured for ns

solutions with known total concentrations of nz¼ 2 basic
Copyright # 2007 John Wiley & Sons, Ltd.
components, cL and cH, at nw wavelengths. The multi-
component spectra analyzing program SQUAD(84) 16

may adjust bqr and eqr for a given absorption spectra set
by minimizing the residual-square sum function, U,

U ¼
Xn

i¼1

Xm

j¼1

ðAexp; i; j � Acalc; i; jÞ2

¼
Xn

i¼1

Xm

j¼1

ðAexp;i;j �
Xp

k¼1

"j;kckÞ2 ¼ minimum

where Ai, j represents the element of the experimental
absorbance response-surface of size ns� nw (Fig. 1a–c)
and the independent variables ck are the total concen-
trations of the basic components cL and cH being adjusted
in ns solutions. This means that the predicted absorban-
ce-response surface is fitted to given spectral data, with
one dimension representing the dependent variable
(absorbance), and the other two dimensions representing
the independent variables, viz. the total component
concentrations (or pH) of ns solutions, at nw wavelengths.
The best estimates of the protonation constants, bqr, i,
i¼ 1, . . ., p, are adjusted by SQUAD(84) Gauss–Newton
and Newton–Raphson regression algorithms. At the same
time, a matrix of the molar absorptivities (eqr, j,
j¼ 1, . . ., nw)k, k¼ 1, . . ., p, as non-negative real is
estimated, based on the current values of the protonation
constants. For a set of current values of bqr, i, the free
concentrations of ligand l (as h is known from pH
measurement) is calculated for each solution, followed by
the concentrations of all the species in equilibrium
mixture [LqHr]j, j¼ 1, . . ., p, forming for ns solutions of
the matrix C. When the estimated bqr and eqr values for
the assumed chemical model have been refined, the
agreement between the experimental and predicted data
can be examined. The residuals are analyzed to test
whether the refined parameters adequately represent the
data, and should be randomly distributed about the
predicted regression curve. The following statistics are
calculated: the residual mean e the standard deviation of
the residuals s(e), the skewness of the residuals set ĝ1ðeÞ,
and the kurtosis of the residuals set ĝ2ðeÞ. If, after
termination of the minimization process, the condition
s(A)� sinst(A) or s(e)� sinst(A) is met, the hypothesis of
the chemical model is taken as the most probable one and
is accepted.Another popular program is SPECFIT/32,31

based on singular value decomposition and non-linear
regression modeling using the Levenberg–Marquardt
method for the determination of stability constants from
spectrophotometric titration data. The method, referred to
as ‘model-free’, does not require any assumptions as to
the chemistry of the system, other than the number of
active complexes present, nor any assumptions as to the
nature of absorbing complexes, their stoichiometry or a
thermodynamic model. The latest version of SPECFIT/32
31 makes use of a multiwavelength and multivariate
spectra treatment, and enables a global analysis for
J. Phys. Org. Chem. 2007; 20: 690–701
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Figure 1. pH-dependence of the 3D-absorbance-surface representing the measured multiwavelength absorption spectra at
258C for (a) haemanthamine, (b) lisuride, (c) losartan, and the 3D-residuals map after non-linear regression performed for (d)
haemanthamine, which exhibits 912 residuals of the residual bias e¼�3.36E-09, close to zero, and the residual standard
deviation s(e)¼0.58mAU, close to the instrumental standard deviation sinst(A)¼0.45mAU; the residual skewness g1(e)¼ 2.16
is not close to zero and indicates an asymmetric distribution of the residuals; the residual kurtosis g2 (e)¼ 10.52 is not close to 3
and indicates a non-Gaussian distribution of the residuals. The accuracy test of the bias proves that the bias is not significantly
different from zero, and 34 outlying residuals were indicated, (e) lisuride exhibits 1440 residuals of e¼3.9E-08 being close to
zero, s(e)¼0.76mAU is higher than sinst(A)¼0.28mAU; and both values g1(e)¼�0.43 and g2(e)¼ 3.82 indicate an asymmetric
distribution of the residuals. The accuracy test of the bias e proves significant bias, and 4 outlying residuals were detected, (f)
losartan exhibits 780 residuals of e¼2.0E-08, close to zero, s(e)¼0.40mAU higher than sinst(A)¼0.13mAU; and g1(e)¼ 0.15
proves symmetric distribution while g2(e)¼ 5.00 indicates a non-Gaussian distribution of the residuals. The accuracy test of the
bias proves insignificant bias and 18 outlying residuals; (S-Plus)
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equilibrium and kinetic systems with singular value
decomposition and non-linear least-squares regression
modeling using the Levenberg–Marquardt method. This
method has proven to be superior in discriminating
between chemical models. The experimental and com-
putational schemes for the determination of the proto-
nation constants in a multicomponent system for data
exhibiting small changes in spectra are taken from
Meloun et al.,11,30 and the details for the computer data
treatment are collected in the Supporting Information.

Throughout this paper, it is assumed that the ns� nw

absorbance data matrix A¼ e C containing the ns

recorded spectra as rows can be written as the product
of the nw� p matrix of molar absorptivities e and the
p� ns concentration matrix C. Here, p is the number of
components that absorb in the chosen spectral range. The
rank of the matrix A is obtained from the equation
rank(A)¼min [rank(e), rank(C)]�min (nw, p, ns). Since
the rank of A is equal to the rank of e or C, whichever is
the smaller, and since rank(e)� p and rank(C)� p, then
provided that nw and ns are equal to or greater than p, it is
only necessary to determine the rank of matrixA, which is
equivalent to the number of dominant light-absorbing
components.1,11,20,28 All spectra evaluations may be
performed with the INDICES algorithm 1,28 in the S-Plus
programming environment 29. Most index methods are
functions of the number of principal components PC(k)’s,
into which the spectral data are usually plotted against an
Copyright # 2007 John Wiley & Sons, Ltd.
integer index k, PC(k)¼ f(k), and when the PC(k) reaches
the value of the instrumental error of the spectro-
photometer used, sinst(A), the corresponding index k�

represents the number of light-absorbing components in
the mixture, p ¼ k�. In a scree plot the value of PC(k)
decreases steeply with increasing PCs as long as the
PCs are significant. When k is exhausted the indices
fall off, some even displaying a minimum. At this point
p ¼ k� for all indices. The index values at this point can
be predicted from the properties of the noise, which may
be used as a criterion to determine p.1,28
Computational schema for protonation
model building with SPECFIT32

An experimental and computational scheme for the
protonation model building of a multi-component and
multiwavelength system was proposed by Meloun et al.
cf. page 226 in Reference11 or References16,30 and is here
revised with regard to the SPECFIT/32 and INDICES
applications for a case of data exhibiting small changes in
spectra:
(1) I
nstrumental error of absorbance measurements, sinst
(A): The INDICES algorithm cf. References1,28

should be used to evaluate sinst(A). Cattel’s scree plot
of sk(A)¼ f(k) of the Wernimont–Kankare procedure
J. Phys. Org. Chem. 2007; 20: 690–701
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consists of two straight lines intersecting at {s�k(A);
k�} where k� is the matrix rank for the system and the
instrumental error of the spectrophotometer used,
sinst(A)¼ s�1(A) reaching a value of 0.25mAU in range
225–360 nm for the Cintra 40 (GBC, Australia)
spectrophotometer employed. This value can be used
for a prediction of the signal-to-error ratio SER for
experimental data. It was proven that the indices are
able to accurately predict the correct number of com-
ponents that contribute to a set of absorption spectra
for data sets even exhibiting small changes in spectra
but with an SER of equal to or higher than 10.
(2) E
xperimental design: Simultaneous monitoring of
absorbance spectra and pH during titrations is used
in a titration where the total concentration of one of
the components changes incrementally over a rela-
tively wide range, but the total concentrations of the
other components change only by dilution. It is best
to use wavelengths at which the molar absorptivities
of the species differ greatly, or a large number of
wavelengths spaced at equal intervals.
(3) N
umber of light-absorbing species: A qualitative
interpretation of the spectra aims to evaluate the
quality of the dataset and remove spurious data,
and to estimate the minimum number of factors, that
is, contributing aqueous species, necessary to
describe the experimental data. The INDICES1,28

determine the number of dominant species present
in the equilibrium mixture. It has been proven1 that
the Wernimont–Kankare procedure is a reliable
method for determination of the instrumental stan-
dard deviation of the spectrophotometer used sinst(A),
as it is stable in many situations and can correctly
predict a minor component in a mixture even if its
relative concentration is about 0.5–1% relative to the
remaining components. This method can detect
minor components and solve an ill-defined problem
with severe collinearity in spectra, and predicts the
correct number of components for data sets with a
signal-to-error ratio SER of equal to or higher than 10.
For the signal value S in a numerator of the ratio S/E,
the absorbance difference for the jth-wavelength at
the ith-spectrum Dij¼Aij–Ai, acid can be used, where
Ai, acid is the limiting spectrum of acid form of drug
measured. This absorbance change Dij is then divided
with the instrumental standard deviation sinst(A) and
the resulting ratio D/sinst(A) here represents the sig-
nal-to-error ratio SER of the spectra studied. This
SER ratio is examined for all absorbance matrix
elements in the whole range of wavelength l and
is compared with the limiting SER value. It has been
proven that when the ratio D/sinst(A) is equal to or
higher than 10, the factor analysis is able to predict
the correct number of components in the equilibrium
mixture.
(4) C
hoice of computational strategy of regression pro-
cess: The input data should specify whether bqr or log
yright # 2007 John Wiley & Sons, Ltd.
bqr values are to be refined with an application of two
procedures of non-linear regression, and whether
multiple regression (MR) or non-negative linear
least-squares (NNLS) are desired. It should be indi-
cated whether the protonation constants are to be
refined or held constant, and whether molar absorp-
tivities are to be refined.
(5) T
he initial estimates of predicted parameter bqr from
the molecular structure: It is wise before starting a
regression to analyze the actual experimental data,
to search for scientific library sources to obtain a
good default for the number of ionizing groups and
numerical values for the initial guess as to the
relevant protonation constants and the probable spec-
tral traces of all the expected components. Some
programs, PALLAS 32 and MARVIN 33, provide a
collection of powerful tools for making a prediction
of the pKa values of any organic compound on the
basis of the 3D-structural formulae of the com-
pounds.
(6) D
iagnostic criteria indicating a chemical model:
When the minimization process of a regression spec-
tra analysis terminates, some diagnostic criteria are
examined to determine whether the results should be
accepted34:

1st diagnostic – the physical meaning of the para-
metric estimates: The physical meaning of the
protonation constants, associated molar absorptiv-
ities, and stoichiometric indices is examined: bqr

and eqr should be neither too high nor too low, and
eqr should not be negative. The empirical rule that
is often used is that a parameter is considered to be
significant when the relation s(bj)�Fs<bj is met
and where Fs is equal to 3 at a 99.9% statistical
probability level.
2nd diagnostic – the physical meaning of the
species concentrations: There are some physical
constraints which are generally applied to concen-
trations of species and their molar absorptivities:
concentrations and molar absorptivities must be
positive numbers. Moreover, the calculated distri-
bution of the free concentrations of the basic
components and the variously protonated species
of the chemical model should show realistic mola-
rities, that is, down to about 10�8M.
3rd diagnostic – parametric correlation coeffi-
cients: Partial correlation coefficients, rij, indicate
the interdependence of two parameters, that is, the
stability constants bi and bj, when others are fixed
in value.
4th diagnostic – goodness-of-fit test: To identify
the ‘best’ or true chemical model when several
are possible or proposed, and to establish whether
the chemical model represents the data adequately,
the residuals e should be carefully analyzed.
The goodness-of-fit achieved is easily seen by
examination of the differences between the exper-
J. Phys. Org. Chem. 2007; 20: 690–701
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imental and calculated values of absorbance,
ei¼Aexp, i, j–Acalc, i, j. One of the most important
statistics calculated is the standard deviation of the
absorbance, s(A), calculated at the termination of
the minimization process as sðAÞ ¼

ffiffiffiffiffiffiffiffiffi
Umin

p
=df

where Umin stands for the residuals-square-sum
function in minimum and df is the degree of free-
dom. This is usually compared with the standard
deviation of absorbance calculated by the
INDICES program 1,28 sk(A) and the instrumental
error of the spectrophotometer used sinst(A): if it is
valid that s(A)� sk(A), or s(A)� sinst(A), then the fit
is considered to be statistically acceptable. Some
realistic empirical limits are employed: for
example, when sinst(A)� s(A)� 0.002, the good-
ness-of-fit is still taken as acceptable, while
s(A)> 0.005 indicates that a good fit has not been
obtained. Alternatively, the statistical measures of
residuals e can be calculated to examine the fol-
lowing criteria: the residual bias e should be a
value close to zero; the residual standard deviation
s(e) being equal to the absorbance standard devi-
ation, s(A) should be close to the instrumental
standard deviation sinst(A); the residual skewness
g1(e) should be close to zero for a symmetric
distribution of residuals; the residual kurtosis
g2(e) should be close to 3 for a Gaussian distri-
bution of residuals.
rig
The details for the computer data treatment are
provided in the Supporting Information.
EXPERIMENTAL

Chemicals and solutions

The haemanthamine and lisuride were the kind gifts of
IVAX Pharmaceuticals s.r.o., Czech Republic. The
haemanthamine 100.0% (HPLC) was calculated as an
area ratio with the use of the internal standard method.
The lisuride, batch No. SC041200/4, was of assay 99.9%
(HPLC) calculated as an area ratio using the internal
standard method. Losartan potassium was purchased
from SMS Pharmaceuticals s.r.o., India, with a purity
of 99.7%. Perchloric acid, 1M, was prepared from
conc. HClO4 (p.a., Lachema Brno) using redistilled water
and standardized against HgO and NaI with a reprodu-
cibility of less than 0.20%. Sodium hydroxide, 1M,
was prepared from pellets (p.a., Aldrich Chemical Com-
pany) with carbondioxide-free redistilled water, and
standardized against a solution of potassium hydrogen-
phthalate using the Gran Method with a reproducibility of
0.1%. The preparation of the other solutions from
analytical reagent-grade chemicals has been described
previously.30
ht # 2007 John Wiley & Sons, Ltd.
Apparatus and pH-spectrophotometric
titration procedure

The apparatus and the pH-spectrophotometric titration
procedure used have been described previously.30
Software used

Computations relating to the determination of dis-
sociation constants were performed by regression
analysis of the UV/VIS spectra using the SQUAD(84)16

and SPECFIT/3231 programs. Most of the graphs were
plotted using ORIGIN 7.536 and S-Plus.29 A qualitative
interpretation of the spectra with the use of the INDICES
program28 aims to evaluate the quality of the dataset and
remove spurious data, and to estimate the minimum
number of factors, that is, contributing aqueous species,
necessary to describe the experimental data, as well as
determining the number of dominant species present in
the equilibrium mixture. pKa are predicted using version
of the PALLAS32 and MARVIN33 programs from 2004
and 2007.
Supporting information available

Complete experimental and computational procedures,
input data specimens, and corresponding output in
numerical and graphical form for the programs,
INDICES, SQUAD(84), and SPECFIT/32 are available
free of charge online at http://meloun.upce.cz in the block
DATA.
RESULTS AND DISCUSSION

Recently, haemanthamine, lisuride, and losartan were
studied in our laboratory for a time7,8, and these three
drugs were therefore taken as examples of drug acids
which exhibit quite small changes in spectra.

Haemanthamine: The deprotonation haemanthamine
LH form exhibits two isosbestic points in the spectra,
and these two points indicate one simple equilibrium.
pH-spectrophotometric titration enables absorbance-res-
ponse data (Fig. 1a and Fig. 2a) to be obtained for analysis
by non-linear regression, and the reliability of parameter
estimates (pK’s and e’s) can be evaluated on the basis of a
goodness-of-fit test of the residuals (Fig. 1d and Fig. 2d). The
A-pH curves at 228, 252, and 294nm (Fig. 2c) show that
a dissociation constant may be indicated. As the changes
in spectra are quite small within deprotonation, however,
both of the variously protonated species L and LH exhibit
quite similar absorption bands. The small shift of a band
maximum to lowerwavelengths in the spectra set is shown in
Fig. 2a and Fig. 2e. The adjustment of pH value from 6.3
to 8.4 causes the absorbance to change by 22mAU only,
J. Phys. Org. Chem. 2007; 20: 690–701
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Figure 2. Non-linear regression analysis of the protonation equilibria model and factor analysis of haemanthamine: (a)
pH-dependent absorption spectra at 258C, (b) Cattel’s scree plot of theWernimont–Kankare procedure for the determination of
the number of light-absorbing species in themixture k

� ¼ 2 leads to the actual instrumental error of the spectrophotometer used
sinst(A)¼0.45mAU (INDICES in S-Plus), (c) the absorbance versus pH curves for 228, 252, and 294 nm at 258C, (d) detecting
influential outlying spectra with the use of the goodness-of-fit test and the plot of the residual standard deviation s(e) versus pH
for 19 spectra in dependence on pH at 258C, (e) pure spectra profiles of molar absorptivities versus wavelengths for the variously
protonated species L, LH, (f) distribution diagram of the relative concentrations of both variously protonated species L, LH, of
haemanthamine in dependence on pH at 258C, (SPECFIT, ORIGIN)
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so that the monitoring of both components L and LH of the
protonation equilibrium is rather uncertain. As the changes
in spectra are very small, a very precise measurement of
absorbance is required for the reliable estimation of the
deprotonation equilibrium studied.

In the first step of the regression spectra analysis the
number of light-absorbing species is estimated by the
INDICES algorithm (Fig. 2b). The position of the break
point on the sk(A)¼ f(k) curve in the factor analysis
scree plot is calculated and gives k�¼ 2 with correspond-
ing co-ordinate log s2

�(A)¼�3.35, that is, s2
�(A)¼

0.45mAU, which also represents the actual instrumental
error sinst(A) of the spectrophotometer used. Due to the
large variations in the indicator values, these latter are
plotted on a logarithmic scale. All other selected methods
of the modified factor analysis in the INDICES algorithm
estimate the two light-absorbing components L and LH of
the protonation equilibrium. The number of light-absor-
bing species p can be predicted from the index function
values by finding the point p¼ k where the slope of index
function PC(k)¼ f(k) changes, or by comparing PC(k)
values to the instrumental error sinst(A)� 0.45mAU. This
is the common criterion for determining p. Very low
values of sinst(A) prove that a reliable spectrophotometer
and experimental techniques were used.

The dissociation constant and the two molar absorptiv-
ities of haemanthamine calculated for 48 wavelengths
of 19 spectra constitute (2� 48) þ1¼ 97 unknown
regression parameters, which are estimated and refined by
Copyright # 2007 John Wiley & Sons, Ltd.
SQUAD(84) or SPECFIT32 in the first run. The reliability
of the parameter estimates may be tested with the use of
the following diagnostics:

The first diagnostic value indicates whether all of the
parametric estimates bqr and eqr have physical meaning
and reach realistic values: for haemanthamine pKa¼
7.28(s¼ 0.007) at I¼ 0.50 and 258C and PALLAS(2004)
predicts pKa¼ 6.94 while MARVIN(2007) pKa¼ 7.37.
As the standard deviations s(log bqr) of parameters logbqr

and s(eqr) of parameters eqr are significantly smaller than
their corresponding parameter estimates, all the variously
protonated species are statistically significant at a
significance level a¼ 0.05. The physical meaning of
the dissociation constant, molar absorptivities, and
stoichiometric indices is examined. The absolute values
of s(bj), s(ej) give information about the last U-contour of
the hyperparaboloid in the neighborhood of the pit, Umin.
For well-conditioned parameters, the last U-contour is a
regular ellipsoid, and the standard deviations are
reasonably low. High s values are found with ill-
conditioned parameters and a ‘saucer’-shaped pit. The
relationship s(bj)�Fs<bj should be met where Fs

is equal to 3 for a 99.9% statistical probability level.
The set of standard deviations of epqr for various wave-
lengths, s(eqr)¼ f(l), should have a Gaussian distribution;
otherwise, erroneous estimates of eqr are obtained.
Figure 2e shows the estimated molar absorptivities of
all of the variously protonated species eL, eLH, of hae-
manthamine in dependence on wavelength.
J. Phys. Org. Chem. 2007; 20: 690–701

DOI: 10.1002/poc



pKa ESTIMATION OF DRUGS 697
The second diagnostic tests whether all of the
calculated free concentrations of variously protonated
species on the distribution diagram of the relative
concentration expressed as a percentage have physical
meaning, which proved to be the case (Fig. 2f). A
distribution diagram makes it easier to quickly judge
the contributions of the individual species to the total
concentration. Since the molar absorptivities will
generally be in the range 103–105 l �mol�1 � cm�1, species
present at less than ca. 0.1% relative concentration will
affect the absorbance significantly only if their e is
extremely high. The diagram shows the protonation
equilibria of LH and L.

The next diagnostic concerns the goodness-of-fit
(Fig. 2d). The goodness-of-fit achieved is easily seen
by examination of the differences between the exper-
imental and calculated values of absorbance, ei¼Aexp, i,

j–Acalc, i, j. Examination of the spectra and of the graph of
the predicted absorbance response-surface through all the
experimental points should reveal whether the results
calculated are consistent and whether any gross exper-
imental errors have been made in the measurement of the
spectra. One of the most important statistics calculated is
the standard deviation of absorbance, s(A), calculated
from a set of refined parameters at the termination of the
minimization process. It is usually compared with the
standard deviation of absorbance calculated by the
INDICES program,19 sk(A), and if s(A)� sk(A), or
s(A)� sinst(A), the instrumental error of the spectropho-
tometer used, the fit is considered to be statistically
acceptable. This proves that the s2(A) value is equal to
Figure 3. Non-linear regression analysis of the protonation equil
absorption spectra at 258C, (b) Cattel’s scree plot of the Wernim
light-absorbing species in mixture k

� ¼2 leads to the act
sinst(A)¼0.28mAU (INDICES in S-Plus); (c) the absorbance versu
pH at 258C, (d) detecting the influential outlying spectra with the
standard deviation s(e) versus pH for 20 spectra at 258C, (e) pure s
the variously protonated species L, LH, (f) distribution diagram of
species L, LH, of lisuride in dependence on pH at 258C, (SPECFIT

Copyright # 2007 John Wiley & Sons, Ltd.
0.45mAU and is quite close to the standard deviation of
absorbance when the minimization process terminates,
s(A)¼ 0.58mAU. Although this statistical analysis of the
residuals20,35 gives the most rigorous test of the
degree-of-fit, realistic empirical limits must be used.
The statistical measures of all residuals e prove that the
minimum of the eliptic hyperparaboloid U is reached: the
residual standard deviation s(e) always has sufficiently
low values, lower than 1mAU. The criteria of resolution
used for the hypotheses were: (1) a failure of the
minimization process in a divergency or a cyclization, (2)
an examination of the physical meaning of the estimated
parameters to ensure that they were both realistic and
positive, and (3) the residuals should be randomly
distributed about the predicted regression spectrum,
systematic departures from randomness being taken to
indicate that either the chemical model or the parameter
estimates were unsatisfactory.

Lisuride: Lisuride also exhibits very small changes in
spectra (Fig. 1b and Fig. 3a) within the protonation of
anion L. The adjustment of pH from 6.1–8.8 causes an
absorbance change of 80mAU at 228 nm only, making
monitoring of the L and LH components rather difficult
(Fig. 3c). The best region of the spectrum seems to be
216–358 nm and pKa¼ 7.86(s¼ 0.012) at I¼ 0.01 and
258C, and PALLAS(2007) predicts pKa¼ 6.65 while
MARVIN(2004) predicts pKa¼ 7.47. The curves of the
molar absorption coefficients for the forms L and LH
cross at the wavelengths 250 and 280 nm, forming two
isosbestic points. Most of the selected methods of factor
analysis by the INDICES algorithm lead to two light-
ibria model and factor analysis of lisuride: (a) pH-dependent
ont–Kankare procedure for determination of the number of
ual instrumental error of the spectrophotometer used
s pH curves for 228, 266, and 340nm in dependence on
use of the goodness-of-fit test and the plot of the residual

pectra profiles of molar absorptivities versus wavelengths for
the relative concentrations of all of the variously protonated
, ORIGIN)

J. Phys. Org. Chem. 2007; 20: 690–701

DOI: 10.1002/poc



698 M. MELOUN, S. BORDOVSKÁ AND T. SYROVÝ
absorbing components in the equilibrium mixture
(Fig. 3b). Even small changes in the spectra of the
proposed chemical model of lisuride protonation led to
small values of standard deviation of absorbance s(A),
these being mostly under 1mAU. This goodness-of-fit
(Fig. 3d) proves a sufficiently reliable estimates of the
dissociation constant and molar absorption coefficient.

Losartan: A proposed strategy for efficient experimen-
tation in dissociation constants determination followed by
spectral data treatment in case of very small changes in
spectra also is presented on the protonation equilibria of
losartan (Fig. 1c and Fig. 4a). Losartan contains a
complicated molecular structure, and two protonation
equilibria can be monitored spectrophotometrically with
close dissociation constants only. As all the variously
protonated anions exhibit quite similar absorption bands,
a part of the spectrum from 212 to 272 nm was selected as
the most convenient for an estimation of the protonation
constants. pH-spectrophotometric titration enables absor-
bance-response-surface data (Fig. 1c) to be obtained for
analysis with non-linear regression, and the reliability of
parameter estimates (pK’s and e’s) can be evaluated on the
basis of a goodness-of-fit test of the residuals. The A-pH
curves at 228, 253, and 266 nm show that two protonation
constants are indicated. The SPECFIT32 or SQUAD(84)
program7 analysis process starts with data smoothing
followed by a factor analysis using the INDICES
procedure1,12. The position of a break-point on the
sk(A)¼ f(k) curve in the scree plot of the three most
reliable approaches (Kankare’s s(A), RSD and RSM in
Figure 4. Non-linear regression analysis of the protonation equili
absorption spectra at 258C, (b) Cattel’s scree plot of theWernimon
light-absorbing species in the mixture k

� ¼3 leads to the a
sinst(A)¼ 0.13mAU (INDICES in S-Plus), (c) the absorbance versus
the influential outlying spectra with the use of the goodness-of-fit
pH for 20 spectra in dependence on pH at 258C, (e) pure spectr
variously protonated species L, LH, and LH2, (f) distribution diagram
L, LH, and LH2, of losartan in dependence on pH at 258C, (SPEC

Copyright # 2007 John Wiley & Sons, Ltd.
References1,12) is calculated and gives k� ¼ 3 with the
corresponding co-ordinate log s3

�(A)¼�3.90, that is,
s3

�(A)¼ 0.13mAU (Fig. 4b), which also represents the
actual instrumental error sinst(A) of the spectrophotometer
used. Due to the large variations in the indicator values,
these latter are plotted on a logarithmic scale. The number
of light-absorbing species p can be predicted from the
index function values by finding the point p¼ k where the
slope of the index function PC(k)¼ f(k) changes, or by
comparing PC(k) values with the instrumental error
sinst(A). This is the common criterion for to determining p.
Very low values of sinst(A) prove that a quite reliable
spectrophotometer and experimental techniques were
used. All index methods of the INDICES program predict
the three variously protonated light-absorbing species of
losartan in equilibrium. The two dissociation constants
and three molar absorptivities of losartan calculated for
39 wavelengths of 20 spectra constitute (2� 39)þ 1
unknown regression parameters which are estimated and
refined by SQUAD(84) or SPECFIT32 in the first run.
The reliability of the parameter estimates may be tested
with the use of following diagnostics:

The first diagnostic value indicates whether all of the
parametric estimates bqr and eqr have physical meaning
and reach realistic values. As the standard deviations
s(logbqr) of parameters logbqr and s(eqr) of parameters
eqr are significantly smaller than their corresponding
parameter estimates, all the variously protonated species
are statistically significant at a significance level a¼ 0.05
and pKa, 1¼ 3.60(s¼ 0.01), pKa, 2¼ 4.73(s¼ 0.01) at
bria model and factor analysis of losartan: (a) pH-dependent
t–Kankare procedure for the determination of the number of
ctual instrumental error of the spectrophotometer used
pH curves for 228, 253, and 266nm at 258C, (d) detecting
test and the plot of the residual standard deviation s(e) versus
a profiles of molar absorptivities versus wavelengths for the
of the relative concentrations of all three protonated species
FIT, ORIGIN)
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Figure 5. Plot of small absorbance changes in the spec-
trum. The value of the absorbance difference for the
jth-wavelength of the ith-spectrum Dij¼Aij–Ai,acid is divided
by the instrumental standard deviation sinst(A), and the
resulting ratios SER¼D/sinst(A) are plotted in dependence
of wavelength l for all absorbance matrix elements, where
Ai, acid is the limiting spectrum of the acid form of the drug.
This ratio is compared with the limiting SER value for (a)
haemanthamine, (b) lisuride, and (c) losartan to test if the
absorbance changes are significantly larger than the instru-
mental noise.
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I¼ 0.01 and 258C and PALLAS(2004) predicts pKa, 1¼
4.25 and pKa, 2¼ 4.83 while MARVIN(2004) pKa, 1¼
4.07 and pKa, 2¼ 5.04. Figure 4e shows the estimated
molar absorptivities of all of the variously protonated
species eL, eLH, eLH2

of losartan in dependence on
wavelength. Some spectra overlap and such cases may
cause some resolution difficulties.

The second diagnostic tests whether all of the
calculated free concentrations of variously protonated
species on the distribution diagram of the relative
concentration expressed as a percentage have physical
meaning, which proved to be the case (Fig. 4f). A
distribution diagram makes it easier to quickly judge
the contributions of the individual species to the total
concentration. The diagram shows that overlapping
protonation equilibria of LH2 with LH and L exist.

The next diagnostic concerns the goodness-of-fit
(Fig. 4d). The goodness-of-fit achieved is easily seen
by examination of the differences between the exper-
imental and calculated values of absorbance, ei¼Aexp, i,

j–Acalc, i, j. Examination of the spectra and of the graph of
the predicted absorbance response-surface through all the
experimental points should reveal whether the results
calculated are consistent and whether any gross exper-
imental errors have been made in the measurement of the
spectra. This proves that the s3(A) value is equal to
0.14mAU and is close to the standard deviation of
absorbance when the minimization process terminates,
s(A)¼ 0.48mAU (SQUAD(84)) or 0.39mAU (SPEC-
FIT32). Although this statistical analysis of residuals13

gives the most rigorous test of the degree-of-fit, realistic
empirical limits must be used. The statistical measures of
all residuals e prove that the minimum of the elliptic
hyperparaboloid U is reached: the residual bias
e¼ 2.00� 10�8 proves that there is no bias or systemic
error in the spectra fitting. The residual standard deviation
s(e)¼ 0.48 (SQUAD(84)) or 0.39 (SPECFIT32) mAU has
a sufficiently low value. The skewness g1(e)¼ 0.15 is
quite close to zero and proves a symmetric distribution of
the residuals set, while the kurtosis g2(e)¼ 5.00 proves a
non-Gaussian distribution.

To express small changes of absorbance in the spectral
set, the absorbance differences for the jth wavelength of
the ith spectrum Di¼Aij - Ai, acid were calculated so that
from the absorbance value of the spectrum measured at
the actual pH the absorbance value of the acidic form was
subtracted. The absorbance difference Di was then
divided by the actual instrumental standard deviation
sinst(A) of the spectrophotometer used, and the resulting
value represents the signal-to-error value SER. Figure 5 is
a graph of the SER in dependence on wavelength in the
measured range for all three drugs. When the SER is
larger than 10, a factor analysis is able to predict the
correct number of light-absorbing components in the
equilibrium mixture.

To prove that non-linear regression can analyze such
data the residuals set was compared with the instrumental
Copyright # 2007 John Wiley & Sons, Ltd.
noise sinst(A). If the ratio e/sinst(A) is of similar magni-
tude, that is, nearly equal to one, it means that sufficient
curve fitting was achieved by the non-linear regression
of the spectra set and that the minimization process
found the minimum of the residual-square-sum function
Umin. Figure 6 shows a comparison of the ratio e/sinst(A)
in dependence on wavelength for all three drugs
measured. From the figure it is obvious that most of
the residuals are of the same magnitude as the ins-
trumental noise.
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Figure 6. Plot of the ratio e/sinst(A), that is, the ratio of the
residuals divided by the instrumental standard deviation
sinst(A) versus the wavelength l for all the residual matrix
elements for (a) haemanthamine, (b) lisuride, and (c) losartan
tests if the residuals are of the same magnitude as the
instrumental noise
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CONCLUSIONS

When drugs are very poorly soluble, pH-spectrophoto-
metric titration may be used with the non-linear regress-
ion of the absorbance-response-surface data instead
of performing a potentiometric determination of the
dissociation constants. The reliability of the dissociation
constants of the three drugs (haemanthamine, lisuride
and losartan) may be proven with goodness-of-fit tests
of the absorption spectra measured at various pH. The
dissociation constant pKa was estimated by non-linear
regression of {pKa, I} data at 258C: for haemanthamine
pKa¼ 7.28(1) at I¼ 0.50, for lisuride pKa¼ 7.86(1) and
for losartan pKa,1¼ 3.60(1), pKa,2¼ 4.73(1) at I¼ 0.01.
Goodness-of-fit tests for the various regression diagnos-
tics enabled the reliability of the parameter estimates to be
determined. Most indices always predict the correct
number of components and even the presence of a minor
Copyright # 2007 John Wiley & Sons, Ltd.
one when the signal-to-error ratio SER is higher than 10.
The Wernimont–Kankare procedure in INDICES per-
forms a reliable determination of the instrumental
standard deviation of spectrophotometer used sinst(A),
correctly predicts the number of light-absorbing com-
ponents present and can also solve an ill-defined problem
with severe collinearity in the spectra or very small
changes in spectra.
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